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Abstract— We consider the oxygen diffusion equation. Oxygen diffusion in a sike cell with simultaneous absorption is an important problem. Oxygen 
diffusion has a wide range of medical applications. Numerical solutions of its partial differential equation are obtained by extrapolation method with the 

vector of values V approximating to C (diffusion) at the mesh points. And the results gave a good agreement with the previous methods [1,2,3]. And L0 
stability method of analysis of the stability is also investigated. 
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1. Introduction 

 

The diffusion with absorption model accounts for 

the presence of moving boundary which marks the furthest 

penetration of oxygen into the absorbing medium and also 

allows for an initial distribution of oxygen through the 

absorbing tissue. The model predictions may be used in the 

development of time variant radiation treatments of 

cancerous tumors, so that the dosage of radiation could be 

varied with the changing oxygen concentration. Simple 

expressions are also presented for evaluating the surface 

oxygen concentration the rate of consumption of oxygen 

per unit volume of absorbing tissue, and the point of 

innermost oxygen penetration. 

 Crank and Gupta [1] studied the moving boundary 

problem arising from the diffusion of oxygen into 

absorbing tissue. Crank and Gupta [4] also employed an 

uniform space grid moving with the boundary and the 

necessary interpolations are performed with either cube 

splines or polynomials, Liapis et al. [5] proposed an 

orthogonal collocation for solving the partial differential 

equation of the diffusion of oxygen in absorbing tissue. 

Gülkaç studied two numerical methods for oxygen 

diffusion problem [3]. More references to this problem can 

be found in references [6-16]. 

 This paper is organized as follows in section 2 

describes the oxygen diffusion problem. Section 3 describes 

the method and contains the extrapolation method for the 

oxygen diffusion problem. Section 4 describes stability of 

extrapolation method for the oxygen diffusion problem. 

Section 5 presents the numerical results and conclusions. 

 

2. Desciription of Problem 

 

Mathematical model of biological diffusion 

problem was made first by Crank and Gupta [1]. 

 The procedure consists of two levels 

mathematically. At the first level, the stable condition 

occurs  when  the  cell surface  is isolated after the oxygen is  

injected into either from the inside or outside of the cell. 

 At the second level, the absorption of injected 

oxygen by tissues starts. This condition causes the moving 

boundary problem. The goal of this procedure is to find a 

balance position and to define the time dependent moving 

boundary position. 

 In one dimension, the diffusion with absorption 

process is presented by parabolic partial differential 

equation [1] 
  

  
  

   

  
 –m                                                                              (1) 

Where c(x,T) denotes the concentration of oxygen that is 

free to diffuse at distance x from the outer surface of 

medium at time T, D is a constant diffusion coefficient, and 

m a constant rate of consumption of oxygen per unit 

volume of absorbing medium. This problem has two parts. 

1. Steady-state solution 

When the oxygen enters through the surface 

during the initial phase, the boundary conditions is given 

by the expression [3, 12]       

                                                                                (2) 

where c0 is a constant. 

 The steady state is defined by a solution of 

 
   

  
 –                                                                                 (3) 

which satisfies the conditions 

   
  

  
 =0,                                                                           (4) 

where X0 the innermost extend of oxygen penetration. The 

required solution is obtained to be  

  
       

 

  
                                                                                (5) 

where 

    
    

 
                                                                                   (6) 

2. After the surface X=0 has been sealed, the position of the 

receding boundary is denoted by  

X0(T) and problem can be expressed by the equation 
  

  
  

   

   
 –                                                             (7) 

 
  

  
                                                                             (8) 
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                                                                  (9) 

 

  
 

  
         

                                             (10) 

where T=0 is the time when the surface is sealed. By 

changing the variables 

 

  
 

  
 ,   

 

  
     

  

   
   

 

   
   

 

and denoting by s(t) the value of x corresponding to X0(T), 

the above system is (7)-(10) reduced to the following non-

dimensional form [3]: 

 
  

  
 

   

   
                                                                  (11) 

 

                                                                (12) 

                                                         (13) 

and 

                                            (14) 

where C is concentration of the oxygen free to diffuse [1]. 

 

3. Extrapolation Method For The Oxygen Diffusion 

Problem 

 

3.1 Be converted into ordinary differential equations 

systems of partial differential equation 

 

If the x derivative at (x, t) for 
   

   
 is replaced by 

  

in equation (11) and x is considered a constant equation (11) 

can be written as the ordinary differential equation, 

 

          (15) 

 

Subdivide the interval  into N equal subintervals 

by the grid lines xi=ih, i=0(1)N, where Nh=x and write down 

equation (12) at every mesh points xi=ih, i=1(1)N-1 along 

time-level t. It then follows that the values Vi(t) 

approximating to Ci(t) will be exact solution values of the 

system of (N-1) ordinary differential equations . 

Therefore 

 

  

                                                (16) 

. 

. 

. 

  

 

V0 and VN are known boundary values. 

 

We can write this equation system (16) in matrix form as, 

 

           (17) 

and, we can  write as 

                                                                     (18) 

or equation (18) can be write as 

                                                                             (19) 

where V(t)=[V1, V2,…VN-1]T, b is a column vector of zeros 

and known boundary values and matrix A of order (N-1). 

Equation (19) is scalar differential equation. A and b are 

independent of t and V(t) satisfies the initial condition 

V(0)=g, equation (19) is easily solved by method of 

separation of variables, to be 

  

or  

                                                   (20) 

 

therefore, iteration equation for the equation (20) can be 

written follows 

 

                                       (21) 

or 

                                       (22) 

 

Because all boundary values is zero (see eqn.(12) and 

eqn.(13)) then b=-1 and  

 

                                               (23) 

or 

                                           (24) 

 

The boundary values can be always be eliminated if we are 

concerned more, say, with stability than with a particular 

numerical solution.  

Perturb the vector of initial values from g to g*. By equation 

(20) the solution V*(t) is 

 

                                                (25) 

¶C

¶x
= 0,  x = 0,  t ³ 0

C =
¶C

¶x
= 0,  x = s(t),  t ³ 0

C = 0.5(1- x)2,  0 £ x £1,  t = 0

1

h2
C(x - h,t)- 2C(x,t)-C(x + t){ } +O(h2 )

dC(t)

dt
=

1

h2
C(x - h,t)- 2C(x,t)+C(x + h,t){ } -1+O(h2 )

0 £ x £1

dV1(t)

dt
=

1

h2
V0 - 2V1 +V2{ } -1

dV2(t)

dt
=

1

h2
V1 - 2V2 +V3{ } -1

dVN-1(t)

dt
=

1

h2
VN-2 - 2VN-1 +VN{ } -1

dV (t)

dt
= AV (t)+ b

dV

dt
= AV + b

V(t) = -
b

A
+ (g+

b

A
)eAt

V(t) = -A-1b+ etA(g+ A-1b)

V(t + k) = -A-1b+ e(t+k )A(g+ A-1b)

V(t + k) = -A-1b+ ekA(V(t)+ A-1b)

V(t + k) = A-1 + ekAV(t)- A-1

V(t + k) = ekAV(t)+ A-1(I - ekA )

V *(t) = -A-1b+ etA(g* + A-1b)

IJSER



International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015                                                                                                   224 

ISSN 2229-5518 

IJSER © 2015 

http://www.ijser.org 

 

Let perturbation vector E(t) can be written as equation (26) 

with equation (20) and (25) 

                                                         (26) 

Hence the perturbation vector 

 at time t is related to the initial 

perturbation vector E(0)=g*-g by E(t)=etAE(0). 

As before 

E(t+k)=ekAE(t). 

 

3.2 Extrapolation method for oxygen diffusion 

problem 

If the exponential is approximated by its (1,0) Pade 

approximant, the vector of values C=[C1, C2, …, CN-1]T 

approximating V will be solution of the implicit backward 

difference equations [14] 

 

C(t+k)=(I-kA)-1C(t)-B                                                               (27) 

Where A matrix defined is  

 

  

and B is defined B=A-1(I-Ak)-1. Over a time-interval of 2k 

this gives 

 

C(1)(t+2k)=(I-2kA)-1C(t)-A-1(I-2kA)-1                                       (28) 

 

Alternatively, the application of equation (27) twice, each 

over a time-interval of k, leads to the implicit equations, 

 

C(2)(t+2k)=(I-kA)-1C(t+k)=(I-kA)-1[(I-kA)-1C(t)-B]                 (29) 

 

C(2)(t+2k)=(I-kA)-2C(t)-(I-kA)-1B                                              (30) 

 

C(2)(t+2k)=(I-kA)-2C(t)-A-1(I-kA)-2                                           (31) 

 

Equations (28) and (31) are two different backwards 

difference schemes for calculating approximations to 

Ci(t+2k), i=1(1)N-1. 

 The binomial expansion of the matrix inverse of  

(28) and (31) can be written as 

 

C(1)(t+2k)=(I+2kA+4k2A2)C(t)-(I+2kA+4k2A2)A-1+O(k3)       (32) 

and 

C2(t+2k)=(I+2kA+3k2A2)C(t)-(I+2kA+3k2A2)A-1+O(k3)         (33) 

 

But the Maclaurin expansion of exp(2kA) in  

V(t+2k)=e2kAV(t)-A-1e2kA an equation giving a more accurate 

approximation to  

Ci(t+2k) than either (32) or (33), i=1(1)N-1, 

V(t+2k)=(I+2kA+2k2A2)V(t)-A-1(I+2kA+2k2A2)+O(k3)          (34) 

Comparison of equations (32), (33) and (34) shows that 

neither (32) nor (33) is accurate to terms of order k2. A 

simple linear combination of (32) and (33) will however, 

produce an extrapolated vector C(E) that is second order 

accurate in t, i.e. with a leading error term O(k3), namely, 

C(E)(t+2k)=2C(2)(t+2k)-C(1)(t+2k)+F 

 

Where F is F=-A-1(I+2kA+2k2A2). 

 

C(E)=(I+2kA+2k2A2)C(t)+F 

 

The algorithm for the extrapolation is therefore 

 

(I-2kA)C(1)(t+2k)=C(t)-A-1                                                       (35) 

 

(I-2kA)2C(2)(t+2k)=C(t)-A-1                                                      (36) 

 

and  

 

C(E)(t+2k)=2C(2)-C(1)+F                                                              (37) 

Naturally, the extrapolated solution values are used as the 

starting values for the extrapolation procedure over the 

next two time-levels. 

 

4. Stability of Extrapolation Method 

 

 If equation (37) is written in the form  

 

C(E)(t+2k)=S1,0(kA)C(t)+F 

 

                  =[2(I-kA)-2-(I-2kA)-1]C(t) 

then 

S1,0(kA)=2(I-kA)-2-(I-2kA)-1 

 

Therefore the symbol S1,0(-z) of the extrapolation method is, 

 

  

 

Division of the numerator and denominator by z2 shows 

that  . 

 

 for all z>0. 

Hence the extrapolation method is L0-stable. The symbol is 

small and negative for  , which implies that small 

oscillations of fluctuations could occur in the numerical 

solution for  . In this case, visibility 

reduces calculations, because S1,0(-z) is very small for these 

values of z. Therefore, only L0-stable methods are worth 

extrapolating. 

V *(t)-V(t) = etA(g* - g)

E(t) =V *(t)-V(t)

S1,0 (-z) =
2

(1+ z)2
-

1

1+ 2z
=

1+ 2z - z2

1+ 4z + 5z2 + 2z3

S1,0(-z)® 0 as z®¥

S1,0(-z) <1

z >1+ 2

z = -kls¶ >1+ 2
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5. Numerical Results and Conclusion 

 

In this work we proposed an efficient method of 

determining extrapolation by using pade approximates. We 

also showed the stability analysis to prove the merit of our 

proposed numerical scheme. As one would expect, L0-stable 

difference methods of third and fourth accuracy in the t can 

be achieved by extrapolating over considered in Crank [1]. 

The computation procedure showed that the 

present method is easy to handle with minimum error. A 

good agreement between the present method and previous 

methods was also shown. 

The calculations performed with 

d x = 0.05,  d x = 0.1 and d t = 0.001are given in Figures 1 and 

2 which shows that the values obtained are in very good 

agreement with those calculated from earlier works [1, 2, 3]. 

 

 
Figure 1. Position of moving boundary s(t) 

 

 
Figure 2. Surface concentration c 
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